Skip to main content
Log in

Optimization theory in plant evolution: An overview of long-term evolutionary prospects in the angiosperms

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Examination of literature shows that a number of authors regard outbreeding and heterozygosity as the prevalent factors associated with long-term successful evolution in the angiosperms. A number of plant evolutionists, however, have doubted the truth of such an assumption. Everincreasing reports of the existence of arboreal angiospermous apomixis in tropical forests of the Neotropics and the Far East undermined a thinking which, recently, has rested on optimality. Finding apomixis in trees surprised authors, who held biased opinions about the determinism of outbreeding as the major guiding factor in the evolutionary history of the angiosperms. The thinking that apomixis may turn out to be a regular mating system of the flowering plants met with the approval of some authors, who wondered about the true penetration of the phenomenon among the higher plants. The fact that one-third of all known flowering plants are autogamous has cast further doubt on the deterministic infallibility of outbreeding and successful long-term evolution. Despite claims that the breeding system is directly involved with fitness, while determining the course of optimized evolution, there is comparatively little hard evidence to substantiate a hypothesis which, in the last analysis, has rested principally on common sense. Rather, if continuing field research happens to unveil new cases of woody angiospermous apomixis, a prediction is advanced that the next two biomes to show regular incidence of the phenomenon are Africa’s paleotropical savannas and humid forests. If evolution is partly or wholly dependent on the breeding system to proceed, current knowledge supports views that further enhancement of organic diversification vis-à-vis selection and adaptednesss rests on three major tested mating systems: outbreeding, inbreeding and apomixis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, R. D. &G. Borgia. 1978. Group selection, altruism, and the levels of organization of life. Ann. Rev. Ecol. Syst. 9: 449–474.

    Article  Google Scholar 

  • Allard, R. W. 1975. The mating system and microevolution. Genetics 79: 115–126.

    PubMed  Google Scholar 

  • — &L. W. Kannenberg. 1968. Population studies in predominantly self-pollinated species, XI. Genetic divergence among the members of theFestuca microstachys complex. Evolution 22: 517–528.

    Article  Google Scholar 

  • —,S. K. Jain &P. L. Workman. 1968. The genetics of inbreeding populations. Adv. Genetics 14: 55–131.

    Article  Google Scholar 

  • Allem, A. C. 1991. Estudo da biologia reprodutiva de duas espécies florestais Aroeira e Gonçalo-Alves da Região do Cerrado. Pesquisa em Andamento, Cenargen 2: 1–5.

    Google Scholar 

  • Anderson, C. 1982. A monograph of the genusPeixotoa (Malpighiaceae): Taxonomic history, anatomy and morphology, chromosomes, distribution, apomixis, new taxa. Contr. Univ. Michigan Herb. 15: 1–92.

    Google Scholar 

  • Anderson, W. R. 1980. Cryptic self-fertilization in the Malpighiaceae. Science 207: 892–893.

    Article  PubMed  CAS  Google Scholar 

  • Antonovics, J. &D. A. Levin. 1980. The ecological and genetic consequences of density-dependent regulation in plants. Ann. Rev. Ecol. Syst. 11: 411–452.

    Article  Google Scholar 

  • Appanah, S. &H. T. Chan. 1981. Thrips: The pollinators of some Dipterocarps. Malaysian Forester 44: 234–252.

    Google Scholar 

  • Aron, R. 1967. Main currents in sociological thought, 2. Pareto, Weber, Durkheim. Penguin, New York.

    Google Scholar 

  • Arroyo, M. T. K. 1976. Geitonogamy in animal pollinated tropical angiosperms: A stimulus for the evolution of self-incompatibility. Taxon 25: 543–548.

    Article  Google Scholar 

  • —. 1979. Comments on breeding systems in neotropical forests. Pp. 371–380in K. Larsen & L. B. Holm-Nielsen (eds.), Tropical botany. Academic Press, London.

    Google Scholar 

  • Ashton, P. S. 1976. An approach to the study of breeding systems, population structure and taxonomy of tropical trees. Pp. 35–42in J. Burley & B. T. Styles (eds.), Tropical trees: Variation, breeding and conservation. Linnaean Society Symposium Series, 2. Academic Press, London.

    Google Scholar 

  • —. 1977. A contribution of rain forest research to evolutionary theory. Ann. Missouri Bot. Gard. 64: 694–705.

    Article  Google Scholar 

  • —. 1979. Some geographic trends in morphological variation in the Asian Tropics and their possible significance. Pp. 35–48in K. Larsen & L. B. Holm-Nielsen (eds.), Tropical botany. Academic Press, London.

    Google Scholar 

  • —. 1988a. Systematics and ecology of rain forest trees. Taxon 37: 622–629.

    Article  Google Scholar 

  • —. 1988b. Dipterocarp biology as a window to the understanding of tropical forest structure. Ann. Rev. Ecol. Syst. 19: 347–370.

    Article  Google Scholar 

  • Asker, S. 1980. Gametophytic apomixis: Elements and genetic regulation. Hereditas 93: 277–293.

    Google Scholar 

  • Asker, S. E. &L. Jerling. 1992. Apomixis in plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ayala, F. J. 1974. Biological evolution: Natural selection or random walk? Am. Sci. 62: 692–701.

    PubMed  CAS  Google Scholar 

  • —. 1975. Genetic differentiation during the speciation process. Evolut. Biol. 8: 1–78.

    Google Scholar 

  • Ayensu, E. S. 1974. Plant and bat interactions in West Africa. Ann. Missouri Bot. Gard. 61: 702–727.

    Article  Google Scholar 

  • Badillo, V. M. 1971. Monografia de la familia Caricaceae. Asociación de Profesores, Universidad Central de Venezuela, Maracay.

    Google Scholar 

  • Baillon, H. 1865. Sur la parthenogenese et la suppression du genreCaelebogyne. Adansonia 6: 368–379.

    Google Scholar 

  • Baker, H. G. 1959. Reproductive methods as factors in speciation in flowering plants. Cold Spring Harbor Symposium on Quantitative Biology 24: 177–191.

    CAS  Google Scholar 

  • —. 1960. Apomixis and polyembryony inPachira oleaginea (Bombacaceae). Amer. J. Bot. 47: 296–302.

    Article  Google Scholar 

  • —. 1970. Evolution in the Tropics. Biotropica 2: 101–111.

    Article  Google Scholar 

  • —. 1976. “Mistake” pollination as a reproductive system with special reference to the Caricaceae. Pp. 161–169in J. Burley & B. T. Styles (eds.), Tropical trees: Variation, breeding and conservation. Linnaean Society Symposium Series, 2. Academic Press, London.

    Google Scholar 

  • —. 1979. Anthecology: Old testament, new testament, apocrypha. New Zeal. J. Bot. 17: 431–440.

    Google Scholar 

  • —. 1983. An outline of the history of anthecology, or pollination biology. Pp. 7–28in L. Real (ed.), Pollination biology. Academic Press, Orlando, FL.

    Google Scholar 

  • — &P. A. Cox. 1984. Further thoughts on islands and dioecism. Ann. Missouri Bot. Gard. 71: 230–239.

    Article  Google Scholar 

  • —,K. S. Bawa, G. W. Frankie &P. A. Opler. 1983. Reproductive biology of plants in tropical forests. Pp. 183–215in F. B. Golley (ed.), Tropical rain forest ecosystems: Structure and function. Elsevier, Amsterdam.

    Google Scholar 

  • Bancilhon, L. 1971. Contribution à l’étude taxonomique du genrePhyllanthus (Euphorbiaceae). Boissiera 18: 1–81, pls. 1–22.

    Google Scholar 

  • Barlow, B. A., D. Wiens, C. Wiens, W. H. Busby &C. Brighton. 1978. Permanent translocation heterozygosity inViscum album andV. cruciatum, sex association, balanced lethals, sex ratios. Heredity 40: 33–38.

    Article  Google Scholar 

  • Bateman, A. J. 1952. Self-incompatibility systems in angiosperms. Heredity 6: 285–310.

    Article  Google Scholar 

  • Bawa, K. S. 1974. Breeding systems of tree species of a lowland tropical community. Evolution 28: 85–92.

    Article  Google Scholar 

  • —. 1979. Breeding systems of trees in a tropical wet forest. New Zeal. J. Bot. 17: 521–524.

    Google Scholar 

  • —. 1980. Evolution of dioecy in flowering plants. Ann. Rev. Ecol. Syst. 11: 15–39.

    Article  Google Scholar 

  • —. 1982. Outcrossing and the incidence of dioecism in island floras. Am. Nat. 119: 866–871.

    Article  Google Scholar 

  • — &P. A. Opler. 1975. Dioecism in tropical forest trees. Evolution 29: 167–179.

    Article  Google Scholar 

  • —,D. R. Perry &J. H. Beach. 1985a. Reproductive biology of tropical lowland rain forest trees, I. Sexual systems and incompatibility mechanisms. Amer. J. Bot. 72: 331–345.

    Article  Google Scholar 

  • —,S. H. Bullock, D. R. Perry, R. E. Coville &M. H. Grayum. 1985b. Reproductive biology of tropical lowland rain forest trees, II. Pollination systems. Amer. J. Bot. 72: 346–356.

    Article  Google Scholar 

  • —,P. S. Ashton, R. B. Primack, J. Terborgh, S. M. Nor, F. S. P. Ng &M. Hadley. 1989. Reproductive ecology of tropical forest plants: Research insights and management implications. Biology International, Special Issue, 21: 1–56.

    Google Scholar 

  • —— &S. M. Nor. 1990. Reproductive ecology of tropical forest plants: Management issues. Pp. 3–13in K. S. Bawa & M. Hadley (eds.), Reproductive ecology of tropical forest plants. UNESCO and the Parthenon Publishing Group, Paris and Carnforth.

    Google Scholar 

  • Beach, J. H. &K. S. Bawa. 1980. Role of pollinators in the evolution of dioecy from distyly. Evolution 34: 1138–1142.

    Article  Google Scholar 

  • Bernardo, F. A., C. C. Jesena &C. C. Ramirez. 1961. Parthenocarpy and apomixis inLansium domesticum Corr. Philippines Agricultural Review 44: 415–421.

    Google Scholar 

  • Berry, P. E., H. Tobe &J. A. Gomez. 1991. Agamospermy and loss of distyly inErythroxylum undulatum from northern Venezuela. Amer. J. Bot. 78: 595–600.

    Article  Google Scholar 

  • Black, G. A., T. Dobzhansky &C. Pavan. 1950. Some attempts to estimate species diversity and population density of trees in Amazonian forests. Bot. Gaz. 111: 413–425.

    Article  Google Scholar 

  • Böcher, T. W. 1977. Convergence as an evolutionary process. Bot. J. Linn. Soc. 75: 1–19.

    Article  Google Scholar 

  • Bradshaw, A. D. &K. Hardwick. 1989. Evolution and stress-genotypic and phenotypic components. Biol. J. Linn. Soc. 37: 137–155.

    Google Scholar 

  • — &T. McNeilly. 1991. Evolutionary response to global climatic change. Ann. Bot. 67 (Suppl. 1): 5–14.

    Google Scholar 

  • Brandon, R. N. &R. M. Burian (eds.). 1984. Genes, organisms, populations: controversies over the units of selection. MIT Press, Cambridge.

    Google Scholar 

  • Brown, W. L. 1983. Genetic diversity and genetic vulnerability—An appraisal. Econ. Bot. 37: 4–12.

    Google Scholar 

  • Carman, J. G. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61: 51–94.

    Google Scholar 

  • Carpenter, F. L. 1976. Plant-pollinator interactions in Hawaii: Pollination energetics ofMetrosideros coltina (Myrtaceae). Ecology 57: 1125–1144.

    Article  Google Scholar 

  • Carson, H. L. 1985. Unification of speciation theory in plants and animals. Syst. Bot. 10: 380–390.

    Article  Google Scholar 

  • —. 1987a. The genetic system, the deme, and the origin of species. Ann. Rev. Genet. 21: 405–423

    Article  PubMed  CAS  Google Scholar 

  • —. 1987b. The process whereby species originate. Bioscience 37: 715–720.

    Article  Google Scholar 

  • Casper, B. B. &E. L. Charnov. 1982. Sex allocation in heterostylous plants. J. Theor. Biol. 96: 143–149.

    Article  Google Scholar 

  • Chan, H. T. 1981. Reproductive biology of some Malaysian dipterocarps, III. Breeding systems. Malaysian Forester 44: 28–36.

    Google Scholar 

  • Chantaranothai, P. &J. A. N. Parnell. 1994. The breeding biology of some ThaiSyzygium species. Trop. Ecol. 35: 199–208.

    Google Scholar 

  • Chapman, G. P. &C. D. Darlington. 1992. Apomixis and evolution. Pp. 138–155in G. P. Chapman (ed.), Grass evolution and domestication. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clausen, J. 1951. Stages in the evolution of plant species. Cornell University Press, Ithaca.

    Google Scholar 

  • -. 1954. Partial apomixis as an equilibrium system in evolution. Caryologia (Vol. Suppl.): 469–479.

  • — &W. M. Hiesey. 1958. Experimental studies on the nature of species, IV. Genetic structure of ecological races. Carnegie Institute of Washington Publications 615: 1–312.

    Google Scholar 

  • —,D. D. Keck &W. M. Hiesey. 1940. Experimental studies on the nature of species, I. Effect of varied environments on western North American plants. Carnegie Institute of Washington Publications 520: 1–452.

    Google Scholar 

  • ———. 1945. Experimental studies on the nature of species, II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institute of Washington Publications 564: 1–174.

    Google Scholar 

  • ———. 1947. Heredity of geographically and ecologically isolated races. Am. Nat. 81: 114–133.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1948. Experimental studies on the nature of species, III. Environmental responses of climatic races ofAchillea. Carnegie Institute of Washington Publications 581: 1–129.

    Google Scholar 

  • Connor, H. E. 1979. Breeding systems in the grasses: A survey. New Zeal. J. Bot. 17: 547–574.

    Google Scholar 

  • Costa, R. B., P. Y. Kageyama &G. Mariano. 1992. Estudo do sistema de cruzamento deAnadenanthera falcata Benth.Vochysia tucanorum Mart. eXylopia aromatica Baill. e área de Cerrado. Rev. Brasil. Sementes 14: 93–96.

    Google Scholar 

  • Cox, P. A. 1989. Baker’s Law: Plant breeding systems and island colonization. Pp. 209–224in J. H. Bock & Y. B. Linhart (eds.), The evolutionary ecology of plants. Westview Press: Boulder, CO.

    Google Scholar 

  • —. 1990. Pollination and the evolution of breeding systems in Pandanaceae. Ann. Missouri Bot. Gard. 77: 816–840.

    Article  Google Scholar 

  • Crestana, C. M. S. 1995. Ecologia da polinização deGenipa americana L. (Rubiaceae) na Estação Ecológica de Moji-Guaçu, estado de São Paulo. Revista do Institute Florestal, São Paulo, 7: 169–195.

    Google Scholar 

  • Crisp, P. 1976. Trends in the breeding and cultivation of cruciferous crops. Pp. 69–118in J. G. Vaughan, A. J. Macleod & B. M. G. Jones (eds.), The biology and chemistry of the Cruciferae. Academic Press, London.

    Google Scholar 

  • Cronquist, A. 1987. A botanical critique of cladism. Bot. Rev. 53: 1–52

    Article  Google Scholar 

  • Cuatrecasas, J. 1964. Cacao and its allies: A taxonomic revision of the genusTheobroma. Contr. U.S. Natl. Herb. 35: 379–614.

    Google Scholar 

  • Darlington, C. D. 1939. The evolution of genetic systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • —. 1958. Evolution of genetic systems. Ed. 2. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • —. 1963. Chromosome botany and the origins of cultivated plants. Ed. 2. Allen and Unwin, London.

    Google Scholar 

  • — &K. Mather. 1949. The elements of genetics. Allen and Unwin, London.

    Google Scholar 

  • Darwin, C. 1981 [1859]. The origin of species. Harmondsworth, England, Penguin.

    Google Scholar 

  • —. 1878. The effects of cross and self fertilization in the vegetable kingdom. Ed. 2. John Murray, London.

    Google Scholar 

  • —. 1882. The various contrivances by which orchids are fertilised by insects. Ed. 2. John Murray, London.

    Google Scholar 

  • Davis, J. I. &A. J. Gilmartin. 1985. Morphological variation and speciation. Syst. Bot. 10: 417–425.

    Article  Google Scholar 

  • Dawkins, R. 1989. The selfish gene. Ed. 2. Oxford University Press, Oxford.

    Google Scholar 

  • Dobzhansky, T. 1937. Genetic nature of species differences. Am. Nat. 71: 404–420.

    Article  Google Scholar 

  • —. 1940. Speciation as a stage in evolutionary divergence. Am. Nat. 74: 312–321.

    Article  Google Scholar 

  • —. 1950. Mendelian populations and their evolution. Am. Nat. 84: 401–418.

    Article  Google Scholar 

  • —. 1956. What is an adaptive trait? Am. Nat. 90: 337–347.

    Article  Google Scholar 

  • —. 1959. Variation and evolution. Proc. Amer. Phil. Soc. 103: 252–263.

    Google Scholar 

  • —. 1966. Are naturalists old-fashioned? Am. Nat. 100: 541–550.

    Article  Google Scholar 

  • —. 1968. Adaptedness and fitness. Pp. 109–121in R. C. Lewontin (ed.), Population biology and evolution. Syracuse University Press, Syracuse, NY.

    Google Scholar 

  • —,F. J. Ayala, G. L. Stebbins &J. W. Valentine. 1977. Evolution. W. H. Freeman, San Francisco.

    Google Scholar 

  • Ehrendorfer, F. 1968. Geographical and ecological aspects of infraspecific differentiation. Pp. 261–296in V. H. Heywood (ed.), Modern methods in plant taxonomy. Academic Press, London.

    Google Scholar 

  • Ehrlich, P. R. &P. H. Raven. 1969. Differentiation of populations. Science 165: 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  • Eldredge, N. 1985. Time frames: The rethinking of Darwinian evolution and the theory of punctuated equilibria. Simon & Schuster, New York.

    Google Scholar 

  • Ellstrand, N. C. &D. A. Levin. 1980. Recombination system and population structure inOenothera. Evolution 34: 923–933.

    Article  Google Scholar 

  • Elumeev, E. A. 1976. Peculiarities of flower structure, flowering and fruiting inEleutherococcus senticosus. Pp. 248–252in S. S. Khokhlov (ed.), Apomixis and breeding. B. R. Sharma, transi. Amerind, New Delhi.

    Google Scholar 

  • Faegri, K. &L. van der Pijl. 1979. The principles of pollination ecology. Ed. 3. Oxford University Press, Oxford.

    Google Scholar 

  • Fedorov, A. A. 1966. The structure of the tropical rain forest and speciation in the Humid Tropics. J. Ecol. 54: 1–11.

    Article  Google Scholar 

  • Fleming, T. H. &E. R. Heithaus. 1981. Frugivorous bats, seed shadows, and the structure of tropical forests. Biotropica 13: 45–53.

    Article  Google Scholar 

  • Frankie, G. W. 1975. Tropical forest phenology and pollinator plant coevolution. Pp. 192–209in L. E. Gilbert & P. H. Raven (eds.), Coevolution of animals and plants. University of Texas, Austin.

    Google Scholar 

  • —. 1976. Pollination of widely dispersed trees by animals in Central America, with an emphasis on bee pollination systems. Pp. 151–159in J. Burley & B. T. Styles (eds.), Tropical trees: Variation, breeding and conservation. Linnaean Society Symposium Series, 2. Academic Press, London.

    Google Scholar 

  • —,P. A. Opler &K. S. Bawa. 1976. Foraging behaviour of solitary bees: Implications for outcrossing of a neotropical forest tree species. J. Ecol. 64: 1049–1057.

    Article  Google Scholar 

  • Frost, H. B. 1926. Polyembryony, heterozygosis and vhimeras inCitrus. Hilgardia 1: 365–402.

    Google Scholar 

  • Fryxell, P. A. 1957. Mode of reproduction of higher plants. Bot. Rev. 23: 135–233.

    Article  Google Scholar 

  • Givnish, T. J. 1982. Outcrossing Versus ecological constraints in the evolution of dioecy. Am. Nat. 119: 849–865.

    Article  Google Scholar 

  • Goldenberg, R. &G. J. Shepherd. 1998. Studies on the reproductive biology of Melastomataceae in “Cerrado” vegetation. Pl. Syst. Evol. 211: 13–29.

    Article  Google Scholar 

  • Gould, S. J. &R. C. Lewontin. 1979. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B. 205: 581–598.

    Article  CAS  Google Scholar 

  • Grant, V. 1958. The regulation of recombination in plants. Cold Spring Harbor Symposium on Quantitative Biology 23: 337–363.

    CAS  Google Scholar 

  • —. 1963. The origin of adaptations. Columbia University Press, New York.

    Google Scholar 

  • —. 1964. The architecture of the germplasm. John Wiley and Sons, New York.

    Google Scholar 

  • —. 1975. Genetics of flowering plants. Columbia University Press, New York.

    Google Scholar 

  • —. 1977. Organismic evolution. W. H. Freeman, San Francisco.

    Google Scholar 

  • —. 1980. Gene flow and the homogeneity of species populations. Biologisches Zentralblatt 99: 157–169.

    Google Scholar 

  • —. 1981. Plant speciation. Ed. 2. Columbia University Press, New York.

    Google Scholar 

  • Gupta, P., K. R. Shivanna, H. Y. M. Ram &P. Gupta. 1996. Apomixis and polyembryony in the guggul plant,Commiphora wightii. Ann. Bot. 78: 67–72.

    Article  Google Scholar 

  • Gustafsson, A. 1947. Apomixis in higher plants, II. The causal aspect of apomixis. Lunds Universitat Arsskriet 43: 69–178, 181–370.

    Google Scholar 

  • Ha, C. O., V. E. Sands, E. Soepadmo &K. Jong. 1988. Reproductive patterns of selected understorey trees in the Malaysian rain forest: The apomictic species. Bot. J. Linn. Soc. 97: 317–331.

    Article  Google Scholar 

  • Hamrick, J. L. 1979. Genetic variation and longevity. Pp. 84–113In O. T. Solbrig, S. Jain, G. B. Johnson & P. H. Raven (eds.), Topics in plant population biology. Columbia University Press, New York.

    Google Scholar 

  • — &M. D. Loveless. 1989. The genetic structure of tropical tree populations: Associations with reproductive biology. Pp. 129–146in J. H. Bock & Y. B. Linhart (eds.), The evolutionary ecology of plants. Westview Press, Boulder, CO.

    Google Scholar 

  • Hanna, W. W. &E. C. Bashaw. 1987. Apomixis: Its identification and use in plant breeding. Crop Science 27: 1136–1139.

    Google Scholar 

  • Heithaus, E. R., P. A. Opler &H. G. Baker. 1974. Bat activity and pollination ofBauhinia pauletia: Plant-pollinator coevolution. Ecology 55: 412–419.

    Article  Google Scholar 

  • Heslop-Harrison, J. 1966. Reflections on the role of environmentally-governed reproductive versatility in the adaptation of plant populations. Transactions Proceedings of the Botanical Society of Edinburgh 40: 159–168.

    Google Scholar 

  • Hickman, J. C. 1979. The basic biology of plant numbers. Pp. 232–263in O. T. Solbrig, S. Jain, G. B. Johnson & P. H. Raven (eds.), Topics in plant population biology. Columbia University Press, New York.

    Google Scholar 

  • Howe, H. F. 1977. Bird activity and seed dispersal of a tropical wet forest tree. Ecology 58: 539–550.

    Article  Google Scholar 

  • — &G. F. Estabrook. 1977. On intraspecific competition for avian dispersers in tropical trees. Am. Nat. 111: 817–832.

    Article  Google Scholar 

  • — &J. Smallwood. 1982. Ecology of seed dispersal. Ann. Rev. Ecol. Syst. 13: 201–228.

    Article  Google Scholar 

  • Huxley, J. 1942. Evolution: The modern synthesis. Allen and Unwin, London.

    Google Scholar 

  • Imam, A. G. &R. W. Allard. 1965. Population studies in predominantly self-pollinated species, VI. Genetic variability between and within natural populations of wild oats from differing habitats in California. Genetics 51: 49–62.

    PubMed  CAS  Google Scholar 

  • Jain, S. K. 1975. Population structure and the effects of breeding system. Pp. 15–36in O. H. Frankel & J. G. Hawkes (eds.), Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge.

    Google Scholar 

  • —. 1976. The evolution of inbreeding in plants. Ann. Rev. Ecol. Syst. 7: 469–495.

    Article  Google Scholar 

  • — &R. W. Allard. 1966. The effects of linkage, epistasis and inbreeding on population changes under selection. Genetics 53: 633–659.

    PubMed  CAS  Google Scholar 

  • Janzen, D. H. 1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171: 203–205.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, A., C. O. Ha, K. Jong, V. E. Sands, H. T. Chan, E. Soepadmo &P. S. Ashton. 1978. Apomixis may be widespread among trees of the climax rain forest. Nature 271: 440–442.

    Article  Google Scholar 

  • —,K. Jong, V. E. Sands &E. Soepadmo. 1986. Cytoembryology of some Malaysian dipterocarps, with some evidence of apomixis. Bot. J. Linn. Soc. 92: 75–88.

    Article  Google Scholar 

  • Khokhlov, S. S. 1976. Evolutionary-genetic problems of apomixis in angiosperms. Pp. 3–17in S. S. Khokhlov (ed.), Apomixis and breeding. B. R. Sharma, transi. Amerind, New Delhi.

    Google Scholar 

  • Knox, P. B. 1967. Apomixis: Seasonal and population differences in a grass. Science 157: 325–326.

    Article  PubMed  CAS  Google Scholar 

  • Koltunow, A. M. 1993. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425–1437.

    Article  PubMed  Google Scholar 

  • Kroodsma, D. E. 1975. Flight distances of male euglosssine bees in orchid pollination. Biotropica 7: 71–72.

    Article  Google Scholar 

  • Kruckeberg, A. R. 1986. An essay: The stimulus of unusual geologies for plant speciation. Syst. Bot. 11: 455–463.

    Article  Google Scholar 

  • Kupriyanov, P. G. 1986. The role of apomictic genetic complexes in the flora and the evolutionary significance of apomixis in flowering plants. Istochniki Informatsii V Filogeneticheskoi Sistematike Rastenie. V. N. Tikhomirov, ed. Vllth Moscow Conference on Plant Phylogeny, 23–25 December, 1986. Vol. 2. Moscow: Nauka, 38–40 (in Russian).

    Google Scholar 

  • Levin, D. A. 1972. Competition for pollinator service: A stimulus for the evolution of autogamy. Evolution 26: 668–669.

    Article  Google Scholar 

  • —. 1975. Pest pressure and recombination systems in plants. Am. Nat. 109: 437–451.

    Article  Google Scholar 

  • — &H. W. Kerster. 1974. Gene flow in seed plants. Evolut. Biol. 7: 139–220.

    Google Scholar 

  • Lewis, D. 1942. The evolution of sex in flowering plants. Biol. Rev. 17: 46–67.

    Article  Google Scholar 

  • Lewis, H. 1963. The taxonomic problems of inbreeders or how to solve any taxonomic problem. Regnum Vegetabile 27: 37–44.

    Google Scholar 

  • Lewontin, R. C. 1957. The adaptations of populations to varying environments. Cold Spring Harbor Symposium on Quantitative Biology 22: 395–408.

    CAS  Google Scholar 

  • —. 1970. The units of selection. Ann. Rev. Ecol. Syst.l: 1–18.

    Article  Google Scholar 

  • —. 1974. The genetic basis of evolutionary change. Columbia University Press, New York.

    Google Scholar 

  • —. 1985. Population genetics. Ann. Rev. Genet. 19: 81–102.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, D. G. 1979a. Evolution towards dioecy in heterostylous populations. Pl. Syst. Evol. 131: 71–80.

    Article  Google Scholar 

  • —. 1979b. Parental strategies of angiosperms. New Zeal. J. Bot. 17: 595–606.

    Google Scholar 

  • —. 1979c. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113: 67–79.

    Article  Google Scholar 

  • Lord, E. M. 1981. Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. Bot. Rev. 47: 421–449.

    Article  Google Scholar 

  • Love, A. 1960. Biosystematics and classification of apomicts. Feddes Repertorium 63: 136–148.

    Google Scholar 

  • Lugada, E. N. &C. Proenca. 1996. A survey of the reproductive biology of the Myrtoideae (Myrtaceae). Ann. Missouri Bot. Gard. 83(4): 480–503.

    Article  Google Scholar 

  • Maguire, B. 1976. Apomixis in the genusClusia (Clusiaceae): A preliminary report. Taxon 25: 241–244.

    Article  Google Scholar 

  • Mascie-Taylor, C. G. N., J. B. Gibson &J. M. Thoday. 1986. Effects of disruptive selection, XI. Gene flow and divergence. Heredity 57: 407–413.

    Article  Google Scholar 

  • Mather, K. 1943. Polygenic inheritance and natural selection. Biol. Rev. 18: 32–64.

    Article  Google Scholar 

  • —. 1955. Polymorphism as an outcome of disruptive selection. Evolution 9: 52–61.

    Article  Google Scholar 

  • —. 1966. Breeding systems and response to selection. Pp. 13–19in J. G. Hawkes (ed.), Reproductive biology and taxonomy of vascular plants. Pergamon Press, Oxford.

    Google Scholar 

  • Maynard Smith, J. 1962. Disruptive selection, polymorphism and sympatric speciation. Nature 195: 60–62.

    Article  Google Scholar 

  • —. 1964. Group selection and kin selection. Nature 201: 1145–1147.

    Article  Google Scholar 

  • —. 1966. Sympatric speciation. Am. Nat. 100: 637–650.

    Article  Google Scholar 

  • —. 1976. Group selection. Quart. Rev. Biol. 51: 277–283.

    Article  Google Scholar 

  • —. 1978. Optimization theory in evolution. Ann. Rev. Ecol. Syst. 9: 31–56.

    Article  Google Scholar 

  • Mayr, E. 1940. Speciating phenomena in birds. Am. Nat. 74: 249–278.

    Article  Google Scholar 

  • —. 1947. Ecological factors in speciation. Evolution 1: 263–288.

    Article  Google Scholar 

  • —. 1955. Integration of genotypes: Synthesis. Cold Spring Harbor Symposium on Quantitative Biology 20: 327–333.

    CAS  Google Scholar 

  • —. 1963. Animal species and evolution. Oxford University Press, London.

    Google Scholar 

  • —. 1969. The biological meaning of species. Biol. J. Linn. Soc. 1: 311–320.

    Article  Google Scholar 

  • —. 1970. Populations, species and evolution. Belknap Press, Cambridge.

    Google Scholar 

  • —. 1982. The growth of biological thought: Diversity, evolution, and inheritance. Belknap Press of Harvard University Press, Cambridge.

    Google Scholar 

  • —. 1983. How to carry out the adaptationist program? Am. Nat. 121: 324–334.

    Article  Google Scholar 

  • Melo, G. F. A. 1995. Biologia floral e sistema reprodutivo de cinco espécies de Melastomataceae na mata de Dois Irmãos, Recife, Pernambuco. M.S. thesis, Universidade Federal de Pernambuco, Recife, Brazil.

    Google Scholar 

  • — &I. C. Machado. 1996. Biologia da reprodução deHenriettea succosa DC. (Melastomataceae). Rev. Brasil. Biol. 56: 383–389.

    Google Scholar 

  • Mogie, M. 1986. On the relationship between asexual reproduction and polyploidy. J. Theor. Biol. 122: 493–498.

    Article  Google Scholar 

  • —. 1992. The evolution of asexual reproduction in plants. Chapman and Hall, London.

    Google Scholar 

  • Murawski, D. A. &K. S. Bawa. 1994. Genetic structure and mating system ofStemonoporus oblongifolius (Dipterocarpaceae) in Sri Lanka. Amer. J. Bot. 81: 155–160.

    Article  Google Scholar 

  • J. L. Hamrich, S. P. Hubbell &R. B. Foster. 1990. Mating systems of two bombacaceous trees of a neotropical moist forest. Oecologia 82: 501–506.

    Article  Google Scholar 

  • Naumova, T. N. 1993. Apomixis in angiosperms: Nucellar and integumentary embryony. CRC Press, Boca Raton FL.

    Google Scholar 

  • Nygren, A. 1954. Apomixis in the angiosperms, II. Bot. Rev. 20: 577–649.

    Google Scholar 

  • Obeso, J. R. 1996. Producción de frutos y semillas enIlex aquifolium L. (Aquifoliaceae). Anales del Jardin Botánico de Madrid 54: 533–539.

    Google Scholar 

  • Oliveira, P. E., P. E. Gibbs, A. A. Barbosa &S. Talavera. 1992. Contrasting breeding systems in twoEriotheca (Bombacaceae) species of the Brazilian Cerrados. Pl. Syst. Evol. 179: 207–219.

    Article  Google Scholar 

  • Ornduff, R. 1970. Pathways and patterns of evolution: A discussion. Taxon 19: 202–204.

    Article  Google Scholar 

  • Percival, M. S. 1965. Floral biology. Pergamon Press, Oxford.

    Google Scholar 

  • Piedade, L. H. &N. T. Ranga. 1993. Ecologia da polinização deGalipea jasminiflora Engler (Rutaceae). Rev. Brasil. Bot. 16: 151–158.

    Google Scholar 

  • Popper, K. 1982. Unended quest: An intellectual autobiography. Fontana/Collins, Glasgow.

    Google Scholar 

  • Proctor, M. &P. Yeo. 1973. The pollination of flowers. Collins, London.

    Google Scholar 

  • Quarin, C. L. 1986. Seasonal changes in the incidence of apomixis of diploid, triploid, and tetraploid plants ofPaspalum cromyorrhizon. Euphytica 35: 515–522.

    Article  Google Scholar 

  • Randell, B. R. 1970. Adaptations in the genetic system of Australian arid zoneCassia species (Leguminosae, Caesalpinioideae). Austral. Bot. 18: 77–97.

    Article  Google Scholar 

  • Raven, P. H. 1976. Systematics and plant population biology. Syst. Bot. 1: 284–316.

    Article  Google Scholar 

  • —. 1977. The systematics and evolution of higher plants. Pp. 59–83in C. E. Goulden (ed.), Changing scenes in natural sciences, 1776–1976. Special Publication 12. Academy of Natural Sciences, Philadelphia.

    Google Scholar 

  • Richards, A. J. 1986. Plant breeding systems. Allen and Unwin, London.

    Google Scholar 

  • —. 1990a. Studies inGarcinia, dioecious tropical forest trees: Agamospermy. Bot. J. Linn. Soc. 103: 233–250.

    Article  Google Scholar 

  • —. 1990b. Studies inGarcinia, dioecious tropical fruit trees: The origin of the mangosteen (Gmangostana L.). Bot. J. Linn. Soc. 103: 301–308.

    Article  Google Scholar 

  • —. 1990c. Studies inGarcinia, dioecious tropical forest trees: The phenology, pollination biology and fertilization of G.hombroniana Pierre. Bot. J. Linn. Soc. 103: 251–261.

    Article  Google Scholar 

  • —. 1996. Breeding systems in flowering plants and the control of variability. Folia Geobotanica et Phytotaxonomica, Praha, 31: 283–293.

    Article  Google Scholar 

  • Runemark, H. 1970. The role of small populations for the differentiation in plants. Taxon 19: 196–201.

    Article  Google Scholar 

  • Salomão, A. N. &A. C. Allem. 2001. Polyembryony in angiospermous trees of the Brazilian Cerrado and Caatinga vegetation. Acta Bot. Bras. 15: 369–378.

    Article  Google Scholar 

  • Saraiva, L. C., O. César &R. Monteiro. 1996. Breeding systems of shrubs and trees of a Brazilian savanna. Arquivos de Biologia e Tecnologia, São Paulo, 39: 751–763.

    Google Scholar 

  • Scharloo, W. 1989. Developmental and physiological aspects of reaction norms. Bioscience 39: 464–471.

    Article  Google Scholar 

  • Schemske, D. W. 1980. Floral ecology and hummingbird pollination ofCombretum farinosum in Costa Rica. Biotropica 12: 169–181.

    Article  Google Scholar 

  • Schlichting, C. D. 1989. Phenotypic integration and environmental change. Bioscience 39: 460–464.

    Article  Google Scholar 

  • Simpson, G. G. 1953. The major features of evolution. Columbia University Press, New York.

    Google Scholar 

  • Smith, J. 1841. Notice of a plant which produces perfect seeds without any apparent action of pollen. Transactions of the Linnaean Society of London 18: 509–512, table 36.

    Google Scholar 

  • Snaydon, R. W. &T. M. Davies. 1982. Rapid divergence of plant populations in response to recent changes in soil conditions. Evolution 36: 289–297.

    Article  Google Scholar 

  • Solbrig, O. T. 1976a. On the relative advantages of cross and self-fertilization. Ann. Missouri Bot. Gard. 63: 262–276.

    Article  Google Scholar 

  • —. 1976b. Plant population biology: An overview. Syst. Bot. 1: 202–208.

    Article  Google Scholar 

  • —. 1979. A cost-benefit analysis of recombination in plants. Pp. 114–130in O. T. Solbrig, S. Jain, G. B. Johnson & P. H. Raven (eds.), Topics in plant population biology. Columbia University Press, New York.

    Google Scholar 

  • Stace, C. A. 1980. Plant taxonomy and biosystematics. Edward Arnold, London.

    Google Scholar 

  • Stearns, S. C. 1989. The evolutionary significance of phenotypic plasticity. Bioscience 39: 436–445.

    Article  Google Scholar 

  • Stebbins, G. L. 1941. Apomixis in the angiosperms. Bot. Rev. 7: 507–542.

    Article  Google Scholar 

  • —. 1957. Self-fertilisation and population variability in the higher plants. Am. Nat. 91: 337–354.

    Article  Google Scholar 

  • —. 1958. Longevity, habitat, and release of genetic variability in the higher plants. Cold Spring Harbor Symposium on Quantitative Biology 23: 365–378.

    CAS  Google Scholar 

  • —. 1968. Integration of development and evolutionary progress. Pp. 17–36in R. C. Lewontin (ed.), Population biology and evolution. Syracuse University Press, Syracuse.

    Google Scholar 

  • —. 1970. Variation and evolution in plants: Progress during the past twenty years. Pp. 173–208in M. K. Hecht & W. C. Steere (eds.), Essays in evolution and genetics in honor of Theodosius Dobzhansky: A supplement to evolutionary biology. Appleton-Century-Crofts, New York.

    Google Scholar 

  • —. 1972. Ecological distribution of centers of major adaptive radiation in angiosperms. Pp. 7–34in D. H. Valentine (ed.), Taxonomy, phytogeography and evolution. Academic Press, New York.

    Google Scholar 

  • —. 1974. Flowering plants: Evolution above the species level. Edward Arnold, London.

    Google Scholar 

  • —. 1981. Why are there so many species of flowering plants? Bioscience 31: 573–577.

    Article  Google Scholar 

  • —. 1985. Polyploidy, hybridization, and the invasion of new habitats. Ann. Missouri Bot. Gard. 72: 824–832.

    Article  Google Scholar 

  • Stiles, F. G. 1978. Temporal organization of flowering among the hummingbird food-plants of a tropical wet forest. Biotropica 10: 194–210.

    Article  Google Scholar 

  • Stout, A. B. 1938. The genetics of incompatibilities in homomorphic flowering plants. Bot. Rev. 4: 275–369.

    Article  Google Scholar 

  • Thoday, J. M. 1972. Review lecture: Disruptive selection. Proceedings of the Royal Society of London, Series B., 182: 109–143.

    CAS  Google Scholar 

  • —&J. B. Gibson. 1962. Isolation by disruptive selection. Nature 193: 1164–1166.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S. C. 1997. Geographic parthenogenesis in a tropical forest tree. Amer. J. Bot. 84: 1012–1015.

    Article  Google Scholar 

  • Tisserat, B., E. B. Esan &T. Murashige. 1979. Somatic embryogenesis in angiosperms. Horticultural Review 1: 1–78.

    Google Scholar 

  • Türesson, G. 1922a. The species and the variety as ecological units. Hereditas 3: 100–113.

    Google Scholar 

  • —. 1922b. The genotypical response of the plant species to the habitat. Hereditas 3: 211–350.

    Google Scholar 

  • —. 1925. The plant species in relation to habitat and climate. Hereditas 6: 147–236.

    Google Scholar 

  • —. 1930. The selective effect of climate upon the plant species. Hereditas 14: 99–152.

    Article  Google Scholar 

  • Turrill, W. B. 1964. Plant taxonomy, phytogeography, and plant ecology. Pp. 187–224in J. G. W. B. Turrill (ed.), Vistas in botany. Macmillan, New York.

    Google Scholar 

  • Uphof, J. C. T. 1938. Cleistogamic flowers. Bot. Rev. 4: 21–49.

    Article  Google Scholar 

  • Urbanska-Worytkiewicz, K. 1974. L’Agamospermie, système de reproduction important dans la spéciation des angiospermes. Bulletin de la Societé Botanique de France 121: 329–346.

    Google Scholar 

  • Van der Pijl, L. 1960. Ecological aspects of flower evolution, I. Phyletic evolution. Evolution 14: 403–416.

    Article  Google Scholar 

  • —. 1969. Evolutionary action of tropical animals on the reproduction of plants. Biol. J. Linn. Soc. 1: 85–96.

    Article  Google Scholar 

  • —. 1978. Reproductive integration and sexual disharmony in floral functions. Pp. 79–88in A. J. Richards (ed.), The pollination of flowers by insects. Linnaean Society Symposium Series, 6. Academic Press, London.

    Google Scholar 

  • Van Steenis, C.G.G.J. 1969. Plant speciation in Malesia, with special reference to the theory of nonadaptive saltatory evolution. Biol. J. Linn. Soc. 1: 97–133.

    Article  Google Scholar 

  • Waddington, C. H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654–1655.

    Article  PubMed  CAS  Google Scholar 

  • Webb, C. J. &K. S. Bawa. 1983. Pollen dispersal by hummingbirds and butterflies: A comparative study of two lowland tropical plants. Evolution 37: 1258–1270.

    Article  Google Scholar 

  • Webster, G. L. 1967. The genera of Euphorbiaceae in the southeastern United States. J. Arnold Arb. 48: 303–361, 363–430.

    Google Scholar 

  • Whitmore, T. C. 1975. Tropical rain forests of the Far East. Clarendon Press, Oxford.

    Google Scholar 

  • Wilkins, D. A. 1968. The scale of genecological differentiation. Pp. 227–239in V. H. Heywood (ed.), Modern methods in plant Taxonomy. Academic Press, London.

    Google Scholar 

  • Williams, G. C. 1966. Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • —. 1975. Sex and evolution. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • —. 1979. The question of adaptive sex ration in outcrossed vertebrates. Proceedings of the Royal Society of London, Series B., 205: 567–580.

    CAS  Google Scholar 

  • Willson, M. F. 1979. Sexual selection in plants. Am. Nat. 113: 777–790.

    Article  Google Scholar 

  • —. 1982. Sexual selection and dicliny in angiosperms. Am. Nat. 119: 579–583.

    Article  Google Scholar 

  • Wright, S. 1940. Breeding structure of populations in relation to speciation. Am. Nat. 74: 232–248.

    Article  Google Scholar 

  • —. 1978. Evolution and the genetics of populations, 1. Variability within and among natural populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Wyatt, R. 1983. Pollinator-plant interactions and the evolution of breeding systems. Pp. 51–95in L. Real (ed.), Pollination biology. Academic Press, Orlando, FL.

    Google Scholar 

  • Zang, G. G. &T. N. Zhao. 1996. Preliminary report of agamic complex inBoehmeria. China’s Fibre Crops 1: 19 (in Chinese).

    Google Scholar 

  • Zapata, T. R. &M. T. K. Arroyo. 1978. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10: 221–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allem, A.C. Optimization theory in plant evolution: An overview of long-term evolutionary prospects in the angiosperms. Bot. Rev 69, 225–251 (2003). https://doi.org/10.1663/0006-8101(2003)069[0225:OTIPEA]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2003)069[0225:OTIPEA]2.0.CO;2

Keywords

Navigation